Category: Arch

300-320 ARCH resource list

Designing for Cisco Network Service Architectures (ARCH) Foundation Learning Guide: CCDP ARCH 300-320, 4th Edition:

CCDP 300-320 videos courses:

Cisco Design Webinars:

Cisco Arch Study Material:

Cisco Design Zone:

Books / PDF


Cisco Guides:

Various Resources:

Cisco Live:

  • Enterprise Campus Design: Multilayer Architectures and Design Principles – BRKCRS-2031
  • WAN Architectures and Design Principles – BRKRST-2041
  • Campus Wired LAN Deployment Using Cisco Validated Designs – BRKCRS-1500
  • Campus QoS Design-Simplified – BRKCRS-2501
  • OSPF Deployment in Modern Networks – BRKRST-2337
  • EIGRP Deployment in Modern Networks – BRKRST-2336
  • Advanced – Scaling BGP – BRKRST-3321
  • Nexus Multicast Design Best Practices – BRKIPM-3062
  • Cisco FabricPath Technology and Design – BRKDCT-2081
  • Advanced Enterprise Campus Design: Converged Access – BRKCRS-2888
  • Cisco Unified Contact Center Enterprise Planning and Design – BRKCCT-2007


Lab V ( Nexus7k, Overlay Transport Virtualization )

OTV: Overlay Transport Virtualization

OTV(Overlay Transport Virtualization) is a technology that provide layer2 extension capabilities between different data centers.
n its most simplest form OTV is a new DCI (Data Center Interconnect) technology that routes MAC-based information by encapsulating traffic in normal IP packets for transit.

  • Transparent workload mobility
  • Business resiliency
  • Superior computing resource efficiencies
Overlay InterfaceLogical OTV Tunnel interfaceinterface Overlay1
OTV Join InterfaceThe physical link or port-channel that you use to route upstream towards the datacenter interconnectotv join-interface Ethernet2/1
OTV Control GroupMulticast address used to discover the remote sites in the control plane.otv control-group
OTV Data GroupUsed for tunneling multicast traffic over the OTV in the dataplaneotv data-group
Extend VLANsVLANs that will be tunneled over OTV.otv extend-vlan 100
Site VLANUsed to synchronize the Authoritative Edge Device (AED) role within an OTV site. otv site-vlan 999
Site IdentifierShould be unique per Datacenter. Used in AED Election.otv site-identifier 0x1


Cisco: OTV Quick Start Guide

Cisco: NX-OS OTV Configuration Guide

Cisco: OTV Best Practices

Cisco: OTV Whitepaper

OTV Encapsulation

OTV adds a further 42 bytes on all packets traveling across the overlay network. The OTV Edge device removes the CRC and 802.1Q fields from the original Layer2 frame. It then adds an OTV Shim Header which includes this 802.1Q field (this includes the priority P-bit value) and the Overlay ID information. It also includes an external IP header for the transport network. All OTV packets have Don’t Fragment (DF) bit set to 1 in the external IP header.


Quality of Service II ( Deployment, Design )

Quality of Service Deployment

Choosing the correct WAN Type.

  • WAN Providers, you get what you pay for.
    • Tried and True providers
  • Don’t design a sinking ship, bandwidth.
  • Determine bursting capabilities.
  • QoS classes / Policies support.
  • Multicast support.

Modular QoS CLI ( MQC )

  • Class-map
R1(config)#class-map ccdp
Class-map configuration commands:
  description  Class-Map description
  exit         Exit from class-map configuration mode
  match        classification criteria
  no           Negate or set default values of a command

R1(config-cmap)#match ?
  access-group         Access group
  any                  Any packets
  atm                  Match on ATM info
  class-map            Class map
  cos                  IEEE 802.1Q/ISL class of service/user priority values
  destination-address  Destination address
  discard-class        Discard behavior identifier
  dscp                 Match DSCP in IPv4 and IPv6 packets
  fr-de                Match on Frame-relay DE bit
  fr-dlci              Match on fr-dlci
  group-object         Match object-group
  input-interface      Select an input interface to match
  ip                   IP specific values
  mpls                 Multi Protocol Label Switching specific values
  not                  Negate this match result
  packet               Layer 3 Packet length
  precedence           Match Precedence in IPv4 and IPv6 packets
  protocol             Protocol
  qos-group            Qos-group
  source-address       Source address
  vlan                 VLANs to match


Quality of Service I ( QoS, Models, Methods )

What is QoS?

  • Quality of life insurance
  • The ability to dictate traffic treatment

    • Prioritization.
      • Only happens with congestion.
    • Shaping / Policing.
      • Shaping: Mold the traffic down to a specific speed.
      • Policing: ‘evil’ traffic types ( p2p / video ).
    • Advanced Strategies ( WRED – Weighted random early detection)
      • Drop selective TCP streams so it won’t hit max.
  • Strategies to fight the enemy
    • Delay ( how long it takes for a Packet A to get to the other side).
    • Jitter ( Delay variation, Times between Packets A,Packet B,and Packet C taking to get to the other side)
    • Packetloss
Audio Requirements Video Requirements
Jitter< 30ms< 30ms
Delay< 150ms< 150ms
Loss < 1%< 1%


Datacenter Design VI ( SDN )

Software Defined Networking

  • Advantages SDN
    • Automatic Infrastructure Provisioning
    • Multi-tenant enviornments
    • Flexible Placement of servers ( Mobility )
    • Health monitoring of applications
    • Application to NET ( Southbound ) and NET to application ( Northbound ) communication
  • Cisco’s SDN implementation: Application Centric Infrastructure ( ACI )

Three key ingredients for ACI

  • Nexus 9000 series / 9300 / 9500.
  • Aplication Policy Infrastructure Controller ( APIC ).
    • Cisco recommends a minimum of three APIC servers.
  • Policy Model ( “What talks to what and how” ).


Datacenter Design IV ( VPC , MEC, Fabric Extenders )

What is a vPC (virtual Port Channel)

  • Nexus series Network Virtualisation Technology.
  • “Lightweight” VSS – Combine ports, not switches.
  • Links on different switches to appear as the same device.
  • Downstream device can be anything supoprting 802.3ad (LACP).
  • Commonly called Multi Chassis Etherchannel ( MEC ).


IS-IS Design Principles

IS-IS History

  • Created for the OSI Protocol Suite
  • Integrated IS-IS: the mutation.
  • IS-IS dictionary:
    • IS = Intermediate System  (Routers)
    • ES = End System
    • TLV = Type Length Value
    • NSAP = Network Service Access Point
      • (OSI protocols equivilent of the TCP/IP’s IP Address)
  • IS-IS features:
    • Link State Routing Protocol  (Same as OSPF)
    • NSAP address assigned per router
    • Dijkstra SPF powered (Same as OSPF)
      • PRC efficient
    • Hellos Establisch neighbors at Layer 2 ( source MAC, Multicast Mac )
    • Two routing levels ( Level 1 and Level 2 )
    • Area Based Design ( Routers know their area )
    • default link cost = 10

IS-IS High level Design

  • Two routing databases
    • Level1 and Level2
      • Level 1 routers find closest Level2 Exit.
    • Area defined by
    • 49.0001  ( Area 1 )
      • 49 private adressing , 0001 is area 1
  • Three router types

IS-IS Neighbors and Area Design


Network Management (Tools, Netflow, NBAR, IP SLA)

Monitoring and Managing

  • Know your network is doing well.
  • Understand the trends in your network performance.
  • Identify your bottlenecks and propose solutions.
  • Proact – Don’t react.

Phases of optimizations and the tools

  1. Create a baseline – Netflow, NBAR, IP SLA
  2. Optimize Network – QoS, AutoQoS VoIP, AutoQoS Enterprise
  3. Measure / Adjust – Netflow, NBAR, IP SLA, Syslog
  4. Deploy Apps – Netflow, NBAR